乱人伦新中文无码av_精品久久久久中文字_人妻高h喷水荡肉爽文np_就能找到官方欧美最猛性XXXXX69_h动漫啪啪免费查看

產(chǎn)品展示 / products 您的位置:網(wǎng)站首頁 > 產(chǎn)品展示 > 細(xì)胞庫 > 細(xì)胞系 > 人肝癌細(xì)胞HepG2
產(chǎn)品分類

Product category

相關(guān)文章

Related articles

人肝癌細(xì)胞HepG2

人肝癌細(xì)胞HepG2

簡要描述:青旗(上海)生物技術(shù)發(fā)展有限公司,總部位于上海浦東新區(qū),依托本地高校資源,逐步發(fā)展成為以生物技術(shù)為主的研發(fā)、生產(chǎn)、培訓(xùn)為一體的綜合化產(chǎn)業(yè)平臺,在標(biāo)準(zhǔn)化細(xì)胞庫建立及細(xì)胞藥物前端模型方面成果顯著。公司生產(chǎn)經(jīng)營原代細(xì)胞、細(xì)胞系、ELISA試劑盒、感受態(tài)細(xì)胞和HPLC檢測等科研產(chǎn)品與服務(wù)。我們秉承對用戶負(fù)責(zé)的態(tài)度,以對科研的高度嚴(yán)謹(jǐn),以嚴(yán)格的質(zhì)量控制,為廣大生物醫(yī)學(xué)科研用戶提供更優(yōu)質(zhì)的服務(wù)!

更新時間:2021-05-24

廠商性質(zhì):生產(chǎn)廠家

瀏覽次數(shù):576

詳情介紹
品牌其他品牌貨號BFN60800692
規(guī)格T25培養(yǎng)瓶x1 1.5ml凍存管x2供貨周期現(xiàn)貨
主要用途僅供科研應(yīng)用領(lǐng)域醫(yī)療衛(wèi)生,生物產(chǎn)業(yè)

細(xì)胞名稱

人肝癌細(xì)HepG2                  

img1

貨物編碼

BFN60800692

產(chǎn)品規(guī)格

T25培養(yǎng)x1

1.5ml凍存x2

細(xì)胞數(shù)量

1x10^6

1x10^6

保存溫度

37

-198

運輸方式

常溫保溫運輸

干冰運輸

安全等級

1

用途限制

僅供科研用途               1類

 

培養(yǎng)體系

DMEM高糖培養(yǎng)基Hyclone+10%胎牛血清Gibco+1%雙抗Hyclone

培養(yǎng)溫度

37

二氧化碳濃度

5%

簡介

人肝癌細(xì)HepG2細(xì)胞來源于一15歲的白人少年的肝癌組織。該細(xì)胞表達(dá)甲胎蛋白、白蛋白、α-2-巨球蛋白、α-1-抗胰蛋白酶、轉(zhuǎn)鐵蛋白、α-1-抗凝乳蛋白酶、結(jié)合珠蛋白、銅藍(lán)蛋白、纖溶酶原、補(bǔ)C4、C3激活物、纖維蛋白原、α-1酸性糖蛋白、α-2-HS-糖蛋白、β-脂蛋白、視黃醇結(jié)合蛋白;表達(dá)胰島素受體和胰島素樣生長因IGF的受體;該細(xì)胞具3--3-甲酰輔A還原酶和肝甘油三酯脂肪酶的活性。目前尚未證明該細(xì)胞中HBV基因組 人肝癌細(xì)HepG2細(xì)胞由青旗(上海)生物技術(shù)發(fā)展有限公司2019年引種ATCCHB-8065)。

注釋

Problematic cell line: Misidentified. Originally thought to be a hepatocellular carcinoma cell line but shown to be from an hepatoblastoma (PubMed=19751877).

Part of: Cancer Cell Line Encyclopedia (CCLE) project.

Part of: ENCODE project common cell types; tier 1.

Part of: JFCR45 cancer cell line panel.

Part of: MD Anderson Cell Lines Project.

Part of: TCGA-110-CL cell line panel.

Doubling time: ~50-60 hours (DSMZ).

Omics: Deep antibody staining analysis.

Omics: Deep exome analysis.

Omics: Deep phosphoproteome analysis.

Omics: Deep proteome analysis.

Omics: Deep RNAseq analysis.

Omics: DNA methylation analysis.

Omics: Genome sequenced.

Omics: H3K27ac ChIP-seq epigenome analysis.

Omics: H3K27me3 ChIP-seq epigenome analysis.

Omics: H3K36me3 ChIP-seq epigenome analysis.

Omics: H3K4me1 ChIP-seq epigenome analysis.

Omics: H3K4me2 ChIP-seq epigenome analysis.

Omics: H3K4me3 ChIP-seq epigenome analysis.

Omics: H3K79me2 ChIP-seq epigenome analysis.

Omics: H3K9ac ChIP-seq epigenome analysis.

Omics: H3K9me3 ChIP-seq epigenome analysis.

Omics: H4K20me1 ChIP-seq epigenome analysis.

Omics: Metabolome analysis.

Omics: Protein expression by reverse-phase protein arrays.

Omics: Secretome proteome analysis.

Omics: SNP array analysis.

Omics: Transcriptome analysis.

Omics: Virome analysis using proteomics.

STR信息

AmelogeninX,YCSF1PO10,11D13S3179,13;D16S53912,13D18S5113,14;D19S43315.2;D21S1129,31;D2S13381920;D3S135815,16;D5S81811,12;D7S82010;D8S11791516;FGA22,25;TH019;TPOX8,9;vWA17;

參考文獻(xiàn)

PubMed=233137; DOI=10.1038/282615a0

Aden D.P., Fogel A., Plotkin S.A., Damjanov I., Knowles B.B.

Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line.

Nature 282:615-616(1979)

 

PubMed=6248960; DOI=10.1126/science.6248960

Knowles B.B., Howe C.C., Aden D.P.

Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen.

Science 209:497-499(1980)

 

Patent=US4393133

Knowles B.B., Aden D.P.

Human hepatoma derived cell line, process for preparation thereof, and uses therefor.

Patent number US4393133, 12-Jul-1983

 

PubMed=2439335; DOI=10.1111/j.1432-1033.1987.tb11497.x

Vincent C., Marceau M., Blangarin P., Bouic P., Madjar J.J., Revillard J.-P.

Purification of alpha 1-microglobulin produced by human hepatoma cell lines. Biochemical characterization and comparison with alpha 1-microglobulin synthesized by human hepatocytes.

Eur. J. Biochem. 165:699-704(1987)

 

PubMed=8384076; DOI=10.1016/0165-4608(93)90227-D

Chen H.-L., Chiu T.-S., Chen P.-J., Chen D.-S.

Cytogenetic studies on human liver cancer cell lines.

Cancer Genet. Cytogenet. 65:161-166(1993)

 

PubMed=8389256; DOI=10.1093/carcin/14.5.987

Hsu I.C., Tokiwa T., Bennett W., Metcalf R.A., Welsh J.A., Sun T., Harris C.C.

p53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer cell lines.

Carcinogenesis 14:987-992(1993)

 

PubMed=8050184; DOI=10.1111/j.1365-2249.1994.tb06089.x

Wadee A.A., Paterson A., Coplan K.A., Reddy S.G.

HLA expression in hepatocellular carcinoma cell lines.

Clin. Exp. Immunol. 97:328-333(1994)

 

DOI=10.11418/jtca1981.16.3_173

Mihara K., Miyazaki M., Fushimi K., Tsuji T., Inoue Y., Fukaya K.-I., Ohashi R., Namba M.

The p53 gene status and other cellular characteristics of human cell lines maintained in our laboratory.

Tissue Cult. Res. Commun. 16:173-178(1997)

 

PubMed=9178645; DOI=10.1006/cimm.1997.1108

Nakao M., Sata M., Saitsu H., Yutani S., Kawamoto M., Kojiro M., Itoh K.

CD4+ hepatic cancer-specific cytotoxic T lymphocytes in patients with hepatocellular carcinoma.

Cell. Immunol. 177:176-181(1997)

 

PubMed=9359923; DOI=10.18926/AMO/30789

Mihara K., Miyazaki M., Kondo T., Fushimi K., Tsuji T., Inoue Y., Fukaya K.-I., Ishioka C., Namba M.

Yeast functional assay of the p53 gene status in human cell lines maintained in our laboratory.

Acta Med. Okayama 51:261-265(1997)

 

PubMed=11050057; DOI=10.1053ep.2000.19349

Wong N., Lai P., Pang E., Leung T.W.-T., Lau J.W.-L., Johnson P.J.

A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping.

Hepatology 32:1060-1068(2000)

 

PubMed=12029633; DOI=10.1053ep.2002.33683

Yasui K., Arii S., Zhao C., Imoto I., Ueda M., Nagai H., Emi M., Inazawa J.

TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas.

Hepatology 35:1476-1484(2002)

 

PubMed=12068308; DOI=10.1038/nature00766

Davies H., Bignell G.R., Cox C., Stephens P., Edkins S., Clegg S., Teague J.W., Woffendin H., Garnett M.J., Bottomley W., Davis N., Dicks E., Ewing R., Floyd Y., Gray K., Hall S., Hawes R., Hughes J., Kosmidou V., Menzies A., Mould C., Parker A., Stevens C., Watt S., Hooper S., Wilson R., Jayatilake H., Gusterson B.A., Cooper C., Shipley J.M., Hargrave D., Pritchard-Jones K., Maitland N.J., Chenevix-Trench G., Riggins G.J., Bigner D.D., Palmieri G., Cossu A., Flanagan A.M., Nicholson A., Ho J.W.C., Leung S.Y., Yuen S.T., Weber B.L., Seigler H.F., Darrow T.L., Paterson H., Marais R., Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.

Mutations of the BRAF gene in human cancer.

Nature 417:949-954(2002)

 

DOI=10.1385/CP:1:3-4:313

Pang R.T.K., Poon T.C.W., Wong N., Lai P.B.-S., Wong N.L.Y., Chan C.M.L., Yu J.W.S., Chan A.T.C., Sung J.J.Y.

Comparison of protein expression patterns between hepatocellular carcinoma cell lines and a hepatoblastoma cell line.

Clin. Proteomics 1:313-331(2004)

 

PubMed=14980111

Zhai B.-J., Wu F., Shao Z.-Y., Hu K., Zhao C.L., Wang Z.-B.

Establishment of human hepatocellular carcinoma multidrug-resistance cell line (HepG2/Adm) and study apoptosis induced by low-frequency pulse ultrasound exposure.

Zhonghua Gan Zang Bing Za Zhi 12:95-98(2004)

 

PubMed=15767549; DOI=10.1158/1535-7163.MCT-04-0234

Nakatsu N., Yoshida Y., Yamazaki K., Nakamura T., Dan S., Fukui Y., Yamori T.

Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays.

Mol. Cancer Ther. 4:399-412(2005)

 

PubMed=17254797; DOI=10.1016/j.biologicals.2006.10.001

Azari S., Ahmadi N., Tehrani M.J., Shokri F.

Profiling and authentication of human cell lines using short tandem repeat (STR) loci: report from the National Cell Bank of Iran.

Biologicals 35:195-202(2007)

 

PubMed=19751877; DOI=10.1016/j.humpath.2009.07.003

Lopez-Terrada D.H., Cheung S.W., Finegold M.J., Knowles B.B.

Hep G2 is a hepatoblastoma-derived cell line.

Hum. Pathol. 40:1512-1515(2009)

 

PubMed=20069059; DOI=10.1155/2010/437143

Srisomsap C., Sawangareetrakul P., Subhasitanont P., Chokchaichamnankit D., Chiablaem K., Bhudhisawasdi V., Wongkham S., Svasti J.

Proteomic studies of cholangiocarcinoma and hepatocellular carcinoma cell secretomes.

J. Biomed. Biotechnol. 2010:437143-437143(2010)

 

PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458

Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.

A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

Cancer Res. 70:2158-2164(2010)

 

PubMed=20228232; DOI=10.1124/dmd.109.031831

Hart S.N., Li Y., Nakamoto K., Subileau E.-A., Steen D., Zhong X.-B.

A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues.

Drug Metab. Dispos. 38:988-994(2010)

 

PubMed=21269460; DOI=10.1186/1752-0509-5-17

Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Burckstummer T., Bennett K.L., Superti-Furga G., Colinge J.

Initial characterization of the human central proteome.

BMC Syst. Biol. 5:17-17(2011)

 

PubMed=22278370; DOI=10.1074/mcp.M111.014050

Geiger T., Wehner A., Schaab C., Cox J., Mann M.

Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins.

Mol. Cell. Proteomics 11:M111.014050-M111.014050(2012)

 

PubMed=22460905; DOI=10.1038/nature11003

Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.K., Yu J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Nature 483:603-607(2012)

 

PubMed=23325432; DOI=10.1101/gr.147942.112

Varley K.E., Gertz J., Bowling K.M., Parker S.L., Reddy T.E., Pauli-Behn F., Cross M.K., Williams B.A., Stamatoyannopoulos J.A., Crawford G.E., Absher D.M., Wold B.J., Myers R.M.

Dynamic DNA methylation across diverse human cell lines and tissues.

Genome Res. 23:555-567(2013)

 

PubMed=23505090; DOI=10.1002/hep.26402

Wang K., Lim H.Y., Shi S., Lee J., Deng S., Xie T., Zhu Z., Wang Y., Pocalyko D., Yang W.J., Rejto P.A., Mao M., Park C.-K., Xu J.

Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma.

Hepatology 58:706-717(2013)

 

PubMed=23887712; DOI=10.1038/ncomms3218

Nault J.-C., Mallet M., Pilati C., Calderaro J., Bioulac-Sage P., Laurent C., Laurent A., Cherqui D., Balabaud C., Zucman-Rossi J.

High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions.

Nat. Commun. 4:2218-2218(2013)

 

PubMed=24116068; DOI=10.1371/journal.pone.0075692

Weiskirchen R., Weimer J., Meurer S.K., Kron A., Seipel B., Vater I., Arnold N., Siebert R., Xu L.-M., Friedman S.L., Bergmann C.

Genetic characteristics of the human hepatic stellate cell line LX-2.

PLoS ONE 8:E75692-E75692(2013)

 

PubMed=24618588; DOI=10.1371/journal.pone.0091433

Chernobrovkin A.L., Zubarev R.A.

Detection of viral proteins in human cells lines by xeno-proteomics: elimination of the last valid excuse for not testing every cellular proteome dataset for viral proteins.

PLoS ONE 9:E91433-E91433(2014)

 

PubMed=25960936; DOI=10.4161/21624011.2014.954893

Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.

A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.

OncoImmunology 3:E954893-E954893(2014)

 

PubMed=25485619; DOI=10.1038/nbt.3080

Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z., Liu H., Degenhardt J., Mayba O., Gnad F., Liu J., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.

A comprehensive transcriptional portrait of human cancer cell lines.

Nat. Biotechnol. 33:306-312(2015)

 

PubMed=25574106; DOI=10.3748/wjg.v21.i1.311

Cevik D., Yildiz G., Ozturk M.

Common telomerase reverse transcriptase promoter mutations in hepatocellular carcinomas from different geographical locations.

World J. Gastroenterol. 21:311-317(2015)

 

PubMed=26160117; DOI=10.1093/toxsciv136

Sison-Young R.L.C., Mitsa D., Jenkins R.E., Mottram D., Alexandre E., Richert L., Aerts H., Weaver R.J., Jones R.P., Johann E., Hewitt P.G., Ingelman-Sundberg M., Goldring C.E.P., Kitteringham N.R., Park B.K.

Comparative proteomic characterization of 4 human liver-derived single cell culture models reveals significant variation in the capacity for drug disposition, bioactivation, and detoxication.

Toxicol. Sci. 147:412-424(2015)

 

PubMed=26825538; DOI=10.1016/j.jprot.2016.01.016

Wisniewski J.R., Vildhede A., Noren A., Artursson P.

In-depth quantitative analysis and comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes.

J. Proteomics 136:234-247(2016)

 

PubMed=27329724; DOI=10.18632/oncotarget.10161

Watari K., Nishitani A., Shibata T., Noda M., Kawahara A., Akiba J., Murakami Y., Yano H., Kuwano M., Ono M.

Phosphorylation of mTOR Ser2481 is a key target limiting the efficacy of rapalogs for treating hepatocellular carcinoma.

Oncotarget 7:47403-47417(2016)

 

PubMed=27470094; DOI=10.1016/j.chroma.2016.07.042

Liu Z.-Y., Wang F.-J., Chen J., Zhou Y., Zou H.-F.

Modulating the selectivity of affinity absorbents to multi-phosphopeptides by a competitive substitution strategy.

J. Chromatogr. A 1461:35-41(2016)

 

PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005

Li J., Zhao W., Akbani R., Liu W., Ju Z., Ling S., Vellano C.P., Roebuck P., Yu Q., Eterovic A.K., Byers L.A., Davies M.A., Deng W., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y., Mills G.B., Liang H.

Characterization of human cancer cell lines by reverse-phase protein arrays.

Cancer Cell 31:225-239(2017)

 

DOI=10.1101/378497

Zhou B., Ho S.S., Greer S.U., Spies N., Bell J.M., Zhang X., Zhu X., Arthur J.G., Byeon S., Pattni R., Saha I., Song G., Ji H.P., Perrin D., Wong W.H., Abyzov A., Urban A.E.

Haplotype-resolved and integrated genome analysis of ENCODE cell line HepG2.

bioRxiv 2018:378497-378497(2018)

 

PubMed=29610054; DOI=10.1016/j.dmpk.2018.03.003

Shi J., Wang X., Lyu L., Jiang H., Zhu H.-J.

Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes.

Drug Metab. Pharmacokinet. 33:133-140(2018)

 

PubMed=29660373; DOI=10.1016/j.bbagen.2018.04.012

Touat-Hamici Z., Bulteau A.-L., Bianga J., Jean-Jacques H., Szpunar J., Lobinski R., Chavatte L.

Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.

Biochim. Biophys. Acta 1862:2493-2505(2018)

 

PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747

Dutil J., Chen Z., Monteiro A.N., Teer J.K., Eschrich S.A.

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Cancer Res. 79:1263-1273(2019)

 

PubMed=31068700; DOI=10.1038/s41586-019-1186-3

Ghandi M., Huang F.W., Jane-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R. III, Barretina J., Gelfand E.T., Bielski C.M., Li H., Hu K., Andreev-Drakhlin A.Y., Kim J., Hess J.M., Haas B.J., Aguet F., Weir B.A., Rothberg M.V., Paolella B.R., Lawrence M.S., Akbani R., Lu Y., Tiv H.L., Gokhale P.C., de Weck A., Mansour A.A., Oh C., Shih J., Hadi K., Rosen Y., Bistline J., Venkatesan K., Reddy A., Sonkin D., Liu M., Lehar J., Korn J.M., Porter D.A., Jones M.D., Golji J., Caponigro G., Taylor J.E., Dunning C.M., Creech A.L., Warren A.C., McFarland J.M., Zamanighomi M., Kauffmann A., Stransky N., Imielinski M., Maruvka Y.E., Cherniack A.D., Tsherniak A., Vazquez F., Jaffe J.D., Lane A.A., Weinstock D.M., Johannessen C.M., Morrissey M.P., Stegmeier F., Schlegel R., Hahn W.C., Getz G., Mills G.B., Boehm J.S., Golub T.R., Garraway L.A., Sellers W.R.

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Nature 569:503-508(2019)

 

PubMed=31395879; DOI=10.1038/s41467-019-11415-2

Yu K., Chen B., Aran D., Charalel J., Yau C., Wolf D.M., van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

Nat. Commun. 10:3574-3574(2019)

 

 

驗收細(xì)胞注意事 

1、收到人肝癌細(xì)HepG2細(xì)胞,請查看瓶子是否有破裂,培養(yǎng)基是否漏出,是否渾濁,如有請盡快聯(lián)系 

2、收到人肝癌細(xì)HepG2細(xì)胞,如包裝完好,請在顯微鏡下觀察細(xì)胞。,由于運輸過程中的問題,細(xì)胞培養(yǎng)瓶中的貼壁細(xì)胞有可能從瓶壁中脫落下來,顯微鏡下觀察會出現(xiàn)細(xì)胞懸浮的情況,出現(xiàn)此狀態(tài)時,請不要打開細(xì)胞培養(yǎng)瓶,應(yīng)立即將培養(yǎng)瓶置于細(xì)胞培養(yǎng)箱里靜 3-5 小時左右,讓細(xì)胞先穩(wěn)定下,再于顯微鏡下觀察,此時多數(shù)細(xì)胞會重新貼附于瓶壁。如細(xì)胞仍不能貼壁,請用臺盼藍(lán)染色法鑒定細(xì)胞活力,如臺盼藍(lán)染色證實細(xì)胞活力正常請按懸浮細(xì)胞的方法處理。 

3、收到人肝癌細(xì)HepG2細(xì)胞后,請鏡下觀察細(xì)胞,用恰當(dāng)方式處理細(xì)胞。若懸浮的細(xì)胞較多,請離心收集細(xì)胞,接種到一個新的培養(yǎng)瓶中。棄掉原液,使用新鮮配制的培養(yǎng)基,使用進(jìn)口胎牛血清。剛接到細(xì)胞,若細(xì)胞不多 血清濃度可以加 15%去培養(yǎng)。若細(xì)胞迏 80% ,血清濃度還是 10。 

4、收到人肝癌細(xì)HepG2細(xì)胞時如無異常情 ,請在顯微鏡下觀察細(xì)胞密度,如為貼壁細(xì)胞,未超80%匯合度時,將培養(yǎng)瓶中培養(yǎng)基吸出,留 5-10ML 培養(yǎng)基繼續(xù)培養(yǎng):超 80%匯合度時,請按細(xì)胞培養(yǎng)條件傳代培養(yǎng)。如為懸浮細(xì)胞,吸出培養(yǎng)液,1000 轉(zhuǎn)/分鐘離 3 分鐘,吸出上清,管底細(xì)胞用新鮮培養(yǎng)基懸浮細(xì)胞后移回培養(yǎng)瓶 

5、將培養(yǎng)瓶置 37培養(yǎng)箱中培養(yǎng),蓋子微微擰松。吸出的培養(yǎng)基可以保存在滅菌過的瓶子里,存放 4冰箱,以備不時之需。 

6、24 小時后,人肝癌細(xì)HepG2細(xì)胞形態(tài)已恢復(fù)并貼滿瓶壁,即可傳代。(貼壁細(xì)胞)將培養(yǎng)瓶里的培養(yǎng)基倒去, 3-5ml(以能覆蓋細(xì)胞生長面為準(zhǔn)PBS  Hanks液洗滌后棄去。 0.5-1ml 0.25% EDTA 的胰酶消化,消化時間以具體細(xì)胞為準(zhǔn),一 1-3 分鐘,不超 5 分鐘??梢苑?/span>37培養(yǎng)箱消化。輕輕晃動瓶壁,見細(xì)胞脫落下來,加 3-5ml 培養(yǎng)基終止消化。用移液管輕輕吹打瓶壁上的細(xì)胞,使之*脫落,然后將溶液吸入離心管內(nèi)離心,1000rpm/5min。棄上清,視細(xì)胞數(shù)量決定分瓶數(shù),一般一傳二,如細(xì)胞量多可一傳三,有些細(xì)胞不易傳得過稀,有些生長較快的細(xì)胞則可以多傳幾瓶,以具體細(xì)胞和經(jīng)驗為準(zhǔn)。(懸浮細(xì)胞)用移液管輕輕吹打瓶壁,直接將溶液吸入離心管離心即可。 

7、貼壁細(xì) ,懸浮細(xì)胞。嚴(yán)格無菌操作。換液時,換新的細(xì)胞培養(yǎng)瓶和換新鮮的培養(yǎng)液,37,5%CO2 培養(yǎng)。

 

特別提醒 原瓶中培養(yǎng)基不宜繼續(xù)使用,請更換新鮮培養(yǎng)基培養(yǎng)。



留言框

  • 產(chǎn)品:

  • 您的單位:

  • 您的姓名:

  • 聯(lián)系電話:

  • 常用郵箱:

  • 省份:

  • 詳細(xì)地址:

  • 補(bǔ)充說明:

  • 驗證碼:

    請輸入計算結(jié)果(填寫阿拉伯?dāng)?shù)字),如:三加四=7

聯(lián)